Protein-protein interaction between caveolin-1 and SHP-2 is dependent on the N-SH2 domain of SHP-2
نویسندگان
چکیده
Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2. Compared with wild-type SHP-2, binding of the N-SH2 domain deletion mutant of SHP-2 to p-caveolin-1 was reduced greatly, using flow cytometric competitive binding assays and surface plasmon resonance (SPR). Moreover, deletion of the N-SH2 domain of SHP-2 affected H2O2-mediated ERK phosphorylation and Src phosphorylation at Tyr 419 in primary astrocytes, suggesting that N-SH2 domain of SHP-2 is responsible for the binding of caveolin-1 and contributes to the regulation of Src phosphorylation and activation following ROS-induced oxidative stress in brain astrocytes.
منابع مشابه
Specificity of the SH2 domains of SHP-1 in the interaction with the immunoreceptor tyrosine-based inhibitory motif-bearing receptor gp49B.
Inhibitory receptors on hemopoietic cells critically regulate cellular function. Despite their expression on a variety of cell types, these inhibitory receptors signal through a common mechanism involving tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM), which engages Src homology 2 (SH2) domain-containing cytoplasmic tyrosine or inositol phosphatases. In th...
متن کاملSH2 domain containing protein tyrosine phosphatase 2 regulates concanavalin A-dependent secretion and activation of matrix metalloproteinase 2 via the extracellular signal-regulated kinase and p38 pathways.
We investigated the role of SH2 domain containing protein tyrosine phosphatase (SHP) 2 in Concanavalin A (Con A) -dependent signaling that leads to the augmented secretion and activation of matrix metalloproteinase (MMP) 2. In cells expressing mutant SHP-2 in which 65 amino acids in the SH2-N domain were deleted, we found that production, secretion, and proteolytic activation of MMP-2 in respon...
متن کاملNegative Regulation of Ros Receptor Tyrosine Kinase Signaling: An Epithelial Function of the SH2 Domain Protein Tyrosine Phosphatase SHP-1
Male “viable motheaten” ( me v ) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are c...
متن کاملAn Investigation of Hierachical Protein Recruitment to the Inhibitory Platelet Receptor, G6B-b
Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b...
متن کاملMolecular dynamics simulations on the free and complexed N-terminal SH2 domain of SHP-2
Signal transduction events are often mediated by small protein domains such as SH2 (Src homology 2) domains that recognize phosphotyrosines (pY) and flanking sequences. In case of the SHP-2 receptor tyrosine phosphatase an N-terminal SH2 domain binds and inactivates the phosphatase (PTP) domain. The pY-peptide-binding site on the N-terminal SH2 domain does not overlap with the PTP binding regio...
متن کامل